TARUN CLASSES OF MATHEMATICS
 WORK WITH US \& FEEL THE DIFFERENCE

Sequence \& Series Assignment -1

1.) Show that $\left(x^{2}+x y+y^{2}\right),\left(z^{2}+x z+x^{2}\right)$ and $\left(y^{2}+y z+z^{2}\right)$ are consecutive terms of an A.P., if x, y and z are in A.P.
2.) a) The third term of G.P. is 4 . Find the product of its first 5 terms.
b) In a G.P , the first term is 7 , last term is $448 \&$ the sum is 889 , Find the common ratio \& number of terms .
3.) Between 1 and 31 , m numbers have been inserted in such a way that the resulting sequence is an A. P. and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is $5: 9$. Find the value of m.
4.) If A.M. and G.M. of roots of a quadratic equation are 8 and 5 , respectively, then obtain the quadratic equation.
5.) If $p^{\text {th }}, q^{\text {th }}, r^{\text {th }}$ and $s^{\text {th }}$ terms of an A.P. are in G.P, then show that $(p-q),(q-r),(r-s)$ are also in G.P.
6.) Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that $P^{2} R^{n}=S^{n}$.
7.) The A.M b / w two numbers $a \& b$ is twice the G.M,Prove that ; $a: b=(2+\sqrt{ } 3):(2-\sqrt{ } 3)$.
8.) Find the sum of n terms of sequence : $0.6+.06+.006+.0006+$. \qquad .n terms.
9.) If p, q, r are in G.P \& the equations $p x^{2}+2 q x+r=0 \& d x^{2}+2 e x+f=0$ have a common root, then show that, d / p, $\mathrm{e} / \mathrm{q}, \mathrm{f} / \mathrm{r}$ are in A.P.
10.) If a and b are the roots of $x^{2}-3 x+p=0$ and c, d are roots of $x^{2}-12 x+q=0$, where a, b, c, d form a G.P. Prove that $\frac{(\mathrm{q}+\mathrm{p})}{(\mathrm{q}-\mathrm{p})}=\frac{17}{15}$.
11.) If f is a function satisfying $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \quad \mathrm{N}$ such that $\mathrm{f}(1)=3$ and $\sum_{x=1}^{n} f(x)=120$, Find the value of n.
12.) Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from $(n+1)^{\text {th }}$ to $(2 n)^{\text {th }}$ term is $\frac{1}{r^{n}}$. 13.) If $a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$ are in A.P, Show that either a, b, c are in A.P or $a b+b c+c a=0$.
14.) Find the value of n so that $\left[a^{(n+1)}+b^{(n+1)}\right] /\left[a^{n}+b^{n}\right]$ may be the geometric mean between a and b.
15.) The sum of three numbers in G.P. is 56 . If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.
16.)Find the value of $2^{1 / 4} .4^{1 / 8} .8^{1 / 6}$ \qquad .∞
17.) There are n arithmetic means between $3 \& 17$. The ratio of the last mean to the first mean is $3: 1$, Find ' n '.
18.) If $a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$ are in A.P , Show that either a, b, c are in A.P or $a b+b c+c a=0$.
19.)Find the sum of 50 terms of sequence : $\quad 7+7.7+7.77+7.777+$
20.) The sum of first two terms of an infinite geometric series is $15 \&$ each term is equal to the sum of all the terms following it . Find the series .
21.) If $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are in A.P while $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in G.P, prove that : $\mathrm{x}^{\mathrm{q}-\mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}-\mathrm{p}} \cdot \mathrm{z}^{\mathrm{p}-\mathrm{q}}=1$.
22.) The sum of two numbers is $13 / 6$. An even number of A.ms. are being inserted between them $\&$ their sum exceeds their number by 1 , Find the number of means inserted.
23.) Let ratio of the $A . M \&$ the G.M of two + ve numbers $a \& b$ be $m: n$, show that $: a: b=\left(m+\sqrt{ } m^{2}-n^{2}\right):\left(m-\sqrt{ } m^{2}-\right.$ n^{2})
24.) The A.M b / w two numbers $a \& b$ is twice the G.M, Prove that ; $a: b=(2+\sqrt{3}):(2-\sqrt{3})$.
25.) The sum of three numbers which are in G.P is 56 . If we subtract $1,7,21$ from these numbers in that order, we obtain an Arithmetic Progression. Find these numbers .
26.) The sum upto n terms of the series: $1+(1+x) y+\left(1+x+x^{2}\right) y^{2}+\left(1+x+x^{2}+x^{3}\right) y^{3}+\ldots$ \qquad
27.) Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that $P^{2} R^{n}=S^{n}$.
28.) Find the value of n so that $\left[a^{(n+1)}+b^{(n+1)}\right] /\left[a^{n}+b^{n}\right]$ may be the geometric mean between a and b.
29.) Prove that for two positive no. A.M > G.M. If A and G be A.M. and G.M., respectively between two positive numbers, prove that the numbers are $A \pm \sqrt{(A+G)(A-G)}$.
30.) If the first and the nth term of a G.P. are a and b, respectively, and if P is the product of n terms, prove that $P^{2}=(a b)^{n}$
31.) Find the sum to n terms of the sequence, $8,88,888,8888$. \qquad
32.) The sum of three numbers in G.P. is 56 . If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.
33.)If A.M. and G.M. of roots of a quadratic equation are 8 and 5 , respectively, then obtain the quadratic equation.
34.) Insert three numbers between 1 and 256 so that the resulting sequence is a G.P.
35.) If $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are in A.P while $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in G.P, prove that : $\mathrm{x}^{\mathrm{q-r}} \cdot \mathrm{y}^{\mathrm{r}-\mathrm{p}} \cdot \mathrm{z}^{\mathrm{p}-\mathrm{q}}=1$.
36.) The A.M b / w two numbers a \& b is twice the G.M, Prove that ; $a: b=(2+\sqrt{3}):(2-\sqrt{3})$.
37.) There are n arithmetic means between $3 \& 17$. The ratio of the last mean to the first mean is $3: 1$, Find ' n '.
38.) The ratio of the sum of $m \& n$ terms of an A.P is $m^{2}: n^{2}$. Show that the ratio of $m^{\text {th }} \& n^{\text {th }}$ term is $2 m-1: 2 n-1$.
39.) The sum upto n terms of the series: $1+(1+x) y+\left(1+x+x^{2}\right) y^{2}+\left(1+x+x^{2}+x^{3}\right) y^{3}+$. \qquad
40.) Find the value of n so that $\left[a^{(n+1)}+b^{(n+1)}\right] /\left[a^{n}+b^{n}\right]$ may be the geometric mean between a and b.
41.)If $a(1 / b+1 / c), b(1 / c+1 / a), c(1 / a+1 / b)$ are in A.P , prove that a, b, c are in A.P .
42.) If a, b, c are in G.P. and $a^{1 / x}=b^{1 / y}=c^{1 / z}$, prove that x, y, z are in A.P.
43.) Shamshad Ali buys a scooter for Rs 22000 . He pays Rs 4000 cash and agrees to pay the balance in annual instalment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?

